Effects of glucose sensing/signaling on oxidative stress response in glucose repression mutants of Schizosaccharomyces pombe.
نویسندگان
چکیده
The resistant to glucose repression mutants of Schizosaccharomyces pombe (ird5, ird13, and ird14) have a high tolerance to oxidative stress induced by H2O2. In all ird mutants, the increased expression level of the fbp1 gene can be interpreted as a lack of glucose repression in these mutants. To investigate the mechanisms of the oxidative stress response in ird mutants, we analyzed the transcription of stress response-related genes, sod1, ctt1, atf1, pap1, and sty1, under stressed and non-stressed conditions. We then analyzed the phosphorylation state of the Sty1-MAP kinase in ird mutants. Our findings support the concept of an adaptive response to oxidative stress in these mutants. In addition, these results imply that either glucose signaling mechanisms leading to glucose repression and glucose utilization as an energy source are regulated apart from each other or, like Saccharomyces cerevisiae, S. pombe might have additional glucose detection systems.
منابع مشابه
Genes involved in glucose repression and oxidative stress response in the fission yeast Schizosaccharomyces pombe.
We looked for changes in gene expression and novel genes that could be involved in the interaction between glucose repression and oxidative stress response in the fission yeast, Schizosaccharomyces pombe, using a constitutive invertase mutant, ird11, which is resistant to glucose. BLAST analysis was made of the S. pombe genome database of cDNAs whose expression ratios differentially decrea...
متن کاملA potential protective role for thiamine in glucose-driven oxidative stress.
The relationship between glucose repression and the oxidative stress response was investigated in Schizosaccharomyces pombe wild type cells (972h(-)) and glucose repression resistant mutant type cells (ird11). We aimed to reveal the mechanism of simultaneous resistance to glucose repression and oxidative stress in ird11 mutants. Compared to the wild type, the expression of the sty1 gene was not...
متن کاملRole of Oxidative Stress Response and Trehalose Accumulation in the Longevity of Fission Yeast
BACKGROUND Glucose is the preferred carbon and energy source in most organisms and plays an active role in the regulation of many biological processes. However, an excess of glucose leads to such undesirable conditions as diabetes and age-related diseases. Since Schizosaccharomyces pombe homologous of many human genes, it offers several advantages for the investigation of the molecular mechanis...
متن کاملGlucose repression of transcription of the Schizosaccharomyces pombe fbp1 gene occurs by a cAMP signaling pathway.
Transcription of the fbp1 gene, encoding fructose-1,6-bisphosphatase, of Schizosaccharomyces pombe is subject to glucose repression. Previous work has demonstrated that several genes (git genes) are required for this repression. In this report we demonstrate that one of these genes, git2, is the same as the cyr1 gene, which encodes adenylate cyclase, and that loss-of-function mutations in git2 ...
متن کاملSchizosaccharomyces pombe Hsp90/Git10 is required for glucose/cAMP signaling.
The fission yeast Schizosaccharomyces pombe senses environmental glucose through a cAMP-signaling pathway. Elevated cAMP levels activate protein kinase A (PKA) to inhibit transcription of genes involved in sexual development and gluconeogenesis, including the fbp1(+) gene, which encodes fructose-1,6-bisphosphatase. Glucose-mediated activation of PKA requires the function of nine glucose-insensi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics and molecular research : GMR
دوره 12 4 شماره
صفحات -
تاریخ انتشار 2013